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Background

● The era of the modal reduction transformations began with Hurty 
(1965)

● The starting of the Space Shuttle Program spurred on tremendous 
R&D in modal reduction transformations and modal synthesis

● Today, even with our powerful 64-bit machines, multiple cores, 
and access to all the required RAM, modal reduction 
transformations and modal synthesis plays a key role in efficient 
system dynamic simulations

● Modal reduction/synthesis still remains a key and active R&D area 
in efficient computation/simulations … and you can contribute to 
this



Why Modal Synthesis? 
(1/2)

● With modal synthesis, you can break-up a large complex 
system into a “logical” set of components that make up 
the system
– “logical” is often the actual interfaces between the components

● You can then use the appropriate modal transformations 
to significantly reduce the order of each component FEM
– Component FEMs transform to component reduced-order 

Dynamic Math Models (DMMs)

● Use modal synthesis procedures to “synthesize” the 
component modes and calculate your system modes



Why Modal Synthesis? 
(2/2)

● Your original 5,000,000 DoF transient dynamics problem is now 500 DoFs  
with essentially no impact to accuracy
– The speed of execution, numerical stability and convergence characteristics of 

your solution just increased by many orders of magnitude given the reduced-order 
system

● You are now in in the driver-seat (instead of the FE-Solver)

– You can easily and efficiently run all the sensitivity analyses that you can imagine 
to bound the problem and reduce mission risk

– Would you have trusted a FE-solver with the solution of a 5,000,000 DoF transient 
dynamics problem to begin with?

● And there are times that you are the system integrator responsible for the 
system dynamic simulations
– For this case, you will most likely be the receiver of DMMs from other 

organizations, so modal synthesis is required



Right Choice of Modal Reduction 
Method

● The answer is often dictated by the component's operating 
boundary conditions in the system configuration and available test 
data (not always aligned)

● This requires engineer familiarity with all modal reduction methods 
(fixed-, free-, and mixed- interface)
– Often limited by the engineer's modal reduction knowledge/experience 

with most often opting for the method of most familiarity (Craig-Bampton)

● Component level test data (frequencies, mode shapes, damping) 
may also be available but often with different boundary conditions  
(free, over-constrained, …) than in operating system but can still 
be incorporated into the DMM formulation



Problem

● Engineer familiarity/comfort with methods often dictated by the complexity of 
formulation

● For example, Hurty's paper presents a fixed-interface method using a Ritz 
procedure that requires a special synthesis procedure

● MacNeal's free-interface method is built upon electrical engineering analogies
● Rubin's extension of MacNeal's method uses a truncated series expansion which 

does not lead to a transformation at all
● Herting's mixed interface method is a brute-force derivation
● Hintz, perhaps one of the most key figures in modal transformation methods, is a 

virtual unknown to most engineers given the complex nature of his paper, 
derivations, and special synthesis procedures

● All this has led to a general gravitation towards the common basis of the simplest 
method, Craig-Bampton, who wrote a very nice paper providing a simple 
transformation augmented with a realistic example problem



Our Objectives

● Present a simple systematic approach to the 
derivation of all modal reduction transformations

● Increase engineer familiarity/comfort level in using 
all methods as required

● Understand the strengths/weaknesses in each 
method

● Get to the point that you can build your own method 
that best suits your particular application and 
available test data



This Webinar

● This presentation is Part 1 of a two part NASA/SLaMs 
webinar series  on Modal Synthesis

● Part 1 will cover a “Unified Approach to Modal Reduction 
Methods”

● Part 2 will cover
– Modal synthesis methods

– Response recovery methods

– Special topics – Test Analytical Models

● Presentations are “Webinar” style; i.e., the slides require 
speaker commentary for completeness   



Methods Covered

● Hurty

● Craig-Bampton

● Modified Hurty

● Modified Hurty w/ Attachment Modes

● Modified Hurty w/ flexibility

● Bamford

● Craig-Bampton with Inertia-Relief Modes

● Rubin

● MacNeal

● Craig-Chang

● Craig-Bampton w/ Free Interface Normal 
Modes

● Modified Craig-Bampton w/ Free Interface 
Normal Modes

● Modified Craig-Bampton w/ Free Interface 
Normal Modes and Inertia Relief

● Alternative Free Interface Method 

● Hintz Method of Constraint Modes

● Herting

● Modified Hintz Method of Constraint Modes

● Hintz Method of Attachment Modes

● Modified Hintz Method of Attachment Modes

● Alternative Mixed Interface Methods
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Set Definitions & Superscripts
Set Size Description

F f All FEM Physical DoFs

R r Statically Determinate Support DoFs

B b Redundant Interface DoFs

C c Additional redundant Interface DoFs 

J j R + B

T t All Interface DoFs (T = R + B + C = J + C)

O o Interior DoFs (Complement of T in F)

K k Modal DoFs

Superscripts:

C Constraint Modes
R Rigid-body Modes; Residual Flexibility Modes
E Elastic Normal Modes
A Attachment Modes 
N Rigid + Elastic Normal Modes
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Equivalence Theorem: 
(Linear Algebra)

If B=PAQ, where P and Q are nonsingular 
matrices, then A and B are equivalent
– Special case:

● If P = I, B = AQ then B and A are 
equivalent iff the inverse(Q) exists
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Fixed-Interface Methods (Def.)

ALL physical DoFs in the Modal Reduction 
Coordinate Transformation Must be FIXED when 
Calculating Normal Modes
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Elastic Normal Modes

● Modal Solution

(K−ωk
2 M )Φk

N=0

Φk
T M Φk=I kk

Φk
T K Φk=ωk

2

Φk
N=[Φtk

N

Φok
N ]

Φk
N=[ 0

Φok
N ]

((K+K bb
β
)−ωk

2
(M+M bb

β
))Φk

N
=0

Φk
N
=[

0
Φck

N

Φok
N ]

Free-Interface

Fixed-Interface

Mixed-Interface

Loaded-Interface Modes
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Constraint Modes
(T-set)

[ K tt K to

K ot K oo
][ I tt

Φot
C ]=[F tt

0 ]

Φot
C =−K oo

−1 K ot

Recall T = R + B
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Constraint Modes
(B-set)

[
K rr K rb K ro

K br K bb K bo

K or K ob K oo
][

0
I bb

Φob
C ]=[

F rb

Fbb

0 ]
Φob

C =−K oo
−1 K ob
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Rigid-Body Modes
(R-set; Constraint Modes)

[
K rr K rb K ro

K br K bb K bo

K or K ob K oo
][

I rr

Φbr
R

Φor
R ]=[000]

[Φbr
R

Φor
R ]=−[K bb K bo

K ob K oo
]
−1

[K br

K or
]
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Hurty's Method (1965)

Φ=[ΦRΦC ΦE ]

{
xr

xb

xo
}=[

I rr 0 0

Φbr
R I bb 0

Φor
R Φob

C Φok
E ]{

xr

qb

qk
}

K̄=[
K rr K rb K rk

K br K bb K bk

K kr K kb K kk
]=[

0 0 0
0 K bb 0

0 0 ωk
2 ]

Hurty

Hurty (expanded out)

Special Properties
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Craig-Bampton (1968)

{x t

xo
}=[ I tt 0

Φot
C Φok

E ]{x t

qk
}{

xr

xb

xo
}=[

I rr 0 0

Φbr
R I bb 0

Φor
R Φob

C Φok
E ]{

xr

qb

qk
}

Hurty Craig-Bampton

Equivalent Transformations? {
xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
C Φob

C Φok
E ]{

xr

xb

qk
}

Craig-Bampton (expanded out)
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Modification of Hurty's Method

{
xr

xb

xo
}=[

I rr 0 0

Φbr
R I bb 0

Φor
R Φob

C Φok
E ]{

xr

qb

qk
}

{
xr

xb

xo
}=[

I rr 0 0

Φbr
R I bb 0

Φor
R Φob

C Φok
E ][

I rr 0 0

−Φbr
R I bb 0

0 0 I kk
]{

xr

xb

qk
}

{
xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
R
−Φob

C Φbr
R Φob

C Φok
E ]{

xr

xb

qk
}

Hurty (expanded out)

Hurty x 
elementary 
transformation

Modified-Hurty
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Check for Equivalence

[
I rr 0 0

−Φbr
R I bb 0

0 0 I kk
][

I rr 0 0

Φbr
R I bb 0

0 0 I kk
]=[

I rr 0 0
0 I bb 0
0 0 I kk

]

[
I rr 0 0

Φbr
R I bb 0

Φor
R Φob

C Φok
E ] [

I rr 0 0
0 I bb 0

Φor
R
−Φob

C Φbr
R Φob

C Φok
E ]

Is elementary
transformation
invertible?  Yes

Original Hurty Modified-Hurty

Equivalent
transformations
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Equivalence between
Modified-Hurty and Craig-Bampton

{
xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
R
−Φob

C Φbr
R Φob

C Φok
E ]{

xr

xb

qk
} {

xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
C Φob

C Φok
E ]{

xr

xb

qk
}

Φor
C
=Φor

R
−Φob

C Φbr
R

Modified-Hurty Craig-Bampton (Expanded)
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Attachment Modes
(B-set)

[
K rr K rb K ro

K br K bb K bo

K or K ob K oo
][

0
Φbb

A

Φob
A ]=[

F rb

I bb

0ob
]

Φob
A =−K oo

−1 K obΦbb
A
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Attachment Modes (B-set)
Relation to Flexibility Matrix

[
K rr K rb K ro

K br K bb K bo

K or K ob K oo
][

0
Φbb

A

Φob
A ]=[

F rb

I bb

0ob
]

[Φbb
A

Φob
A ]=[K bb K bo

K ob K oo
]
−1

[ I bb

0ob
]=[Gbb Gbo

Gob Goo
][ I bb

0ob
] Gob=−K oo

−1 K obGbb

Φfb
A=[

0rr 0rb 0ro

0br Gbb Gbo

0or Gob Goo
][

0rb

I bb

0ob
]

Φob
A =−K oo

−1 K obΦbb
A
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Attachment Modes (B-set)
Relation to B-set Constraint Modes

● B-set Constraint 
Modes

● B-set Attachment 
Modes

[
K rr K rb K ro

K br K bb K bo

K or K ob K oo
][

0
Φbb

A

Φob
A ]=[

F rb

I bb

0ob
]

Φob
A =−K oo

−1 K obΦbb
A

[
K rr K rb K ro

K br K bb K bo

K or K ob K oo
][

0
I bb

Φob
C ]=[

F rb

Fbb

0ob
]

Φob
C =−K oo

−1 K ob

For this case (B-set), attachment 
modes are a linear combination of 
constraint modes

Φob
A =Φob

C Φbb
A
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What this means is that we can 
build an equivalent Hurty's Method 

with B-set Attachment Modes

{
xr

xb

xo
}=[

I rr 0 0

Φbr
R Φbb

A 0

Φor
R Φob

A Φok
E ]{

xr

qb

qk
} Construct Hurty's Method

W/ B-set Attachment Modes

{
xr

xb

xo
}=[

I rr 0 0

Φbr
R Φbb

A 0

Φor
R Φob

A Φok
E ][

I rr 0 0

−(Φbb
A
)
−1Φbr

R
(Φbb

A
)
−1 0

0 0 I kk
]{

xr

xb

qk
} Post-Multiply by 

elementary transformation

{
xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
R −Φob

A (Φbb
A )−1Φbr

R Φob
A (Φbb

A )−1 Φok
E ] {

xr

xb

qk
} Modified Hurty's Method

w/ B-set Attachment 
Modes
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Now we have TWO Equivalent and 
Useful Forms of the Hurty 

Transformation

{
xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
R −Φob

A (Φbb
A )−1Φbr

R Φob
A (Φbb

A )−1 Φok
E ]{

xr

xb

qk
}

{
xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
R −Φob

C Φbr
R Φob

C Φok
E ]{

x r

xb

qk
}

Modified-Hurty w/ Constraint Modes

Modified-Hurty w/ Attachment Modes

{
xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
C Φob

C Φok
E ]{

xr

xb

qk
}

Craig-Bampton (Expanded)
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Hurty's Method w/ Attachment 
Modes in Terms of Flexibility

{
xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
R −Φob

A (Φbb
A )−1Φbr

R Φob
A (Φbb

A )−1 Φok
E ]{

xr

xb

qk
}

Modified Hurty's Method w/ Attachment Modes

Φob
A
(Φbb

A
)
−1

=GobGbb
−1

{
xr

xb

xo
}=[

I rr 0 0
0 I bb 0

Φor
R −GobGbb

−1Φbr
R −GobGbb

−1 Φok
E ]{

x r

xb

qk
}

Modified Hurty's Method in Terms of Flexibility
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Bamford (1966) (NASA/JPL)
Method of Attachment Modes

Constrained Components Only

{
xr

xb

xo
}=[

I rr 0 0

Φbr
R Φbb

A 0

Φor
R Φob

A Φok
E ]{

xr

qb

qk
} Take our Hurty's method 

w/ Attachment Modes and
partition out the rigid-body

{xb

xo
}=[Φbb

A 0

Φob
A Φok

E ]{qb

qk
}

Bamford's Method
(Constrained 
Components Only)

Bamford introduced the B-set type attachment modes and developed a
modal reduction coordinate transformation applicable for constrained 
components. The method required a special synthesis procedure which can
be mitigated with elementary transformation.
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Inertia-Relief Attachment Modes
(R-set)

[
K rr K rb K ro

K br K bb K bo

K or K ob K oo
][

0
0

Φor
A ]=−[

M rr M rb M ro

M br M bb M bo

M or M ob M oo
][

I rr

Φbr
R

Φor
R ]+[

Frr

Fbr

0 ]
Φor

A =−K oo
−1(M ooΦor

R +M obΦbr
R +M or)
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Craig-Bampton w/ Inertia-Relief 
Attachment Modes

{x t

xo
}=[ I tt 0

Φot
C Φok

E ]{x t

qk
}

{x t

xo
}=[ I tt 0 0

Φot
C Φor

A Φok
E ]{

x t

qr
A

qk
}

Original Craig-Bampton

Craig-Bampton w/ Inertia-Relief Modes

Potential for linear dependency
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Special Topic: Over-Constrained 
Craig-Bampton Damping Matrix
Problem:  You have an over-constrained C-B stiffness and mass matrix.  You
also have modal damping values from a nominally constrained test configuration.
You know leaving the over-constrained physical partition undamped can lead to
big problems in the CLA. What can you do?     

{
xb

xc

qk
}=[ I bb 0

Φc+k,b
C Φc+k,c+k

E ]{ xb

qc+k
}=T { xb

qc+k
} Note this is not 

a reduction of coordinates

T T CT=[ 0bb 0b,c+k

0c+k,b 2ζc+k ωc+k
]

C=(T T )−1[ 0bb 0b,c+k

0c+k,b 2ζc+k ωc+k
]T−1

We know that the triple product
of the unknown over-constrained
damping matrix with the subject 
transformation is the nominally
constrained damping matrix

Solve for the over-constrained
damping matrix
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Free-Interface Methods (Def.)

ALL physical DoFs in the Modal Reduction 
Coordinate Transformation Must Be FREE when 
Calculating the Normal Modes
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Inertia-Relief Attachment Modes
(T-set)

M ẍ+K x=F ft=[ I tt

0 ]
x=xr+ xe

M ẍe+K xe=F ft−M ẍr

M ẍe+K xe=F ft−M Φr M rr
−1Φr

T F ft

M ẍe+K xe=(I−M Φr M rr
−1Φr

T)F ft

M ẍe+K xe=A F ft
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Inertia-Relief Attachment Modes 
(T-set)

M ẍe+K xe=A F ft

[
K rr K rb K ro

K br K bb K bo

K or K ob K oo
][

0
Φbt

A

Φot
A ]=[

Arr Arb A ro

Abr Abb Abo

Aor Aob Aoo
]F ft+[

Rrt

0
0 ]

~
Φft

A=G ff A ff F ft

[
0

Φbt
A

Φot
A ]=[

0 0 0
0 Gbb Gbo

0 Gob Goo
][

Arr A rb A ro

Abr Abb Abo

Aor Aob Aoo
]F ft
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Inertia-Relief Attachment Modes 
(T-set); Re-orthogonalize Relative to 

Rigid Body Modes

~
Φft

A=G ff A ff F ft

Φft
A=

~
Φft

A−Φfr
R Qrt

(Φfr
R)T M ff Φft

A=0

Qrt=M rr
−1(Φfr

R)T M ff

~
Φft

A

Φft
A=

~
Φft

A−Φfr
R M rr

−1(Φ fr
R)T M ff

~
Φft

A

Φft
A=A ff

T ~
Φft

A
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Inertia-Relief Attachment Modes 
(T-set); Final Steps

Φft
A=A ff

T ~
Φft

A

~
Φft

A=G ff A ff F ft

Φft
A=(A ff

T G ff A ff )F ft

Φft
A=G ff

A F ft
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Inertia-Relief Residual Flexibility 
Modes (T-set)

Φft
R=(G ff

A−Φfk
E ωkk

−2(Φfk
E )T)F ft

Φft
R=G ff

R F ft
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Rubin (1975)

{x t

xo
}=[ I tt 0

Got
R (Gtt

R)−1 Φok
N −Got

R (Gtt
R)−1Φtk

N ]{xt

qk
}

Rockwell International*
Late 70's early 80's in 
a complex ad-hoc 
derivation

{x t

xo
}=[Gtt

R Φtk
N

Got
R Φok

N ]{qt

qk
} Step 1 – Break it down 

To component Modes

{x t

xo
}=[Gtt

R Φtk
N

Got
R Φok

N ][(G tt
R
)
−1

−(G tt
R
)
−1Φtk

N

0 I kk
]{x t

qk
} Step 2 – Multiply

by elementary 
transformation

* Henkel & Martens
Rockwell International
~late 70s
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Rubin (Cont'd)

{x t

xo
}=[ I tt 0

Got
R (Gtt

R)−1 Φok
N −Got

R (Gtt
R)−1Φtk

N ]{xt

qk
} We get Rubin's

Transformation

[(G tt
R)−1 −(G tt

R)−1Φtk
N

0 I kk
][Gtt

R Φtk
N

0 I kk
]= I Check for 

equivalence

[ K̄ tt K tk

K kt K kk
]=[ I tt 0

Got
R
(G tt

R
)
−1 Φok

N
−Got

R
(Gtt

R
)
−1 Φtk

N ]
T

[ K tt K to

K ot K oo
][ I tt 0

Got
R
(Gtt

R
)
−1 Φok

N
−Got

R
(Gtt

R
)
−1 Φtk

N ]

[ M̄ tt M tk

M kt M kk
]=[ I tt 0

Got
R
(Gtt

R
)
−1 Φok

N
−Got

R
(G tt

R
)
−1Φtk

N ]
T

[ M tt M to

M ot M oo
][ I tt 0

Got
R
(G tt

R
)
−1 Φok

N
−Got

R
(Gtt

R
)
−1 Φtk

N ]
Rubin Reduced Stiffness & Mass
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MacNeal (1971)

[ K̄ tt K tk

K kt K kk
]=[ I tt 0

Got
R (G tt

R)−1 Φok
N −Got

R (Gtt
R)−1 Φtk

N ]
T

[ K tt K to

K ot K oo
][ I tt 0

Got
R (Gtt

R)−1 Φok
N −Got

R (Gtt
R)−1Φtk

N ]

[ M̄ tt M tk

M kt M kk
]=[0 0

0 I kk ]

MacNeal Reduced Stiffness & Mass
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Craig-Chang (1977)

{x t

xo
}=[Gtt

R Φtk
N

Got
R Φok

N ]{qt

qk
}

What is the relationship between Craig-Chang and Rubin Transformations?
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Relationship Between Craig-Chang 
and Rubin

{x t

xo
}=[Gtt

R Φtk
N

Got
R Φok

N ]{qt

qk
}

{x t

xo
}=[Gtt

R Φtk
N

Got
R Φok

N ][(G tt
R
)
−1

−(G tt
R
)
−1Φtk

N

0 I kk
]{x t

qk
}

{x t

xo
}=[ I tt 0

Got
R (Gtt

R)−1 Φok
N −Got

R (Gtt
R)−1Φtk

N ] {xt

qk
}

[(G tt
R)−1 −(G tt

R)−1Φtk
N

0 I kk
][Gtt

R Φtk
N

0 I kk
]= I

Craig-Chang

Craig-Chang x
elementary
transformation 

Results in Rubin

Check equivalence
(all information
is retained)

Craig-Chang and Rubin Transformations are Equivalent
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Craig-Bampton 
with Free-Interface Normal Modes?

{x t

xo
}=[ I tt Φtk

E

Φot
C Φok

E ]{qt

qk
}{x t

xo
}=[ I tt 0

Φot
C Φok

E ]{xt

qk
}

Original Craig-Bampton Craig-Bampton w/ 
Free-Interface Normal Modes

Potential Linear Dependence!

Special Synthesis Procedure
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Constructing Modified Craig-
Bampton w/ Free-Interface Normal 

Modes

{x t

xo
}=[ I tt Φtk

E

Φot
C Φok

E ]{qt

qk
} C-B w/ Free-Interface Modes

{x t

xo
}=[ I tt 0

Φot
C Φok

E −Φot
C Φtk

E ]{x t

qk
}

{x t

xo
}=[ I tt Φtk

E

Φot
C Φok

E ][ I tt −Φtk
E

0 I kk
]{xt

qk
}

[ I tt −Φtk
E

0 I kk
][ I tt Φtk

E

0 I kk
]=[ I tt 0

0 I kk ]

x elementary 
transformation

Modified C-B w/ 
Free-Interface Modes

Check equivalence
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Add Inertia-Relief Modes to Improve 
Accuracy

{x t

xo
}=[ I tt 0 0

Φot
C Φor

A Φok
E −Φot

C Φtk
E ]{

x t

qr
A

qk
}

Modified Craig-Bampton w/ Free-Interface Normal Modes
plus inertia-relief modes
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Relationship Between Rubin and 
Modified Craig-Bampton w/ Free-

Interface Normal Modes?

{x t

xo
}=[ I tt 0

Got
R (Gtt

R)−1 Φok
N −Got

R (Gtt
R)−1Φtk

N ]{xt

qk
}

{x t

xo
}=[ I tt 0 0

Φot
C Φor

A Φok
E −Φot

C Φtk
E ]{

x t

qr
A

qk
}

Rubin 

Modified Craig-Bampton w/ Free-Interface
Normal Modes + Inertia Relief
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Alternative Free-Interface*
Inertia-Relief Total Flexibility Form

{x t

xo
}=[G tt

A Φtk
N

Got
A Φok

N ]{qt

qk
} T-set Total Flexibility

plus free-interface
normal modes 

{x t

xo
}=[G tt

A Φtk
N

Got
A Φok

N ][(G tt
A
)
−1

−(Gtt
A
)
−1Φtk

N

0 I kk
]{x t

qk
}

Post-multiply 
by elementary 
transformation

{x t

xo
}=[ I tt 0

Got
A (Gtt

A)−1 Φok
N −Got

A (G tt
A)−1Φtk

N ]{xt

qk
} Final Transformation

[(G tt
A)−1 −(Gtt

A)−1Φtk
N

0 I kk
][G tt

A Φtk
N

0 I kk
]=I Check for Equivalence

Method should be equivalent to Rubin

* Majed, Rockwell
International, 1989
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3 Equivalent Free-Interface Methods

{x t

xo
}=[ I tt 0

Got
R (Gtt

R)−1 Φok
N −Got

R (Gtt
R)−1Φtk

N ]{xt

qk
}

{x t

xo
}=[ I tt 0 0

Φot
C Φor

A Φok
E −Φot

C Φtk
E ] {

x t

qr
A

qk
}

{x t

xo
}=[ I tt 0

Got
A (Gtt

A)−1 Φok
N −Got

A (G tt
A)−1Φtk

N ]{xt

qk
}

Rubin

Modified Craig-Bampton
With Free-Interface 
Normal Modes and Inertia
Relief

Inertia-Relief Total 
Flexibility Form

Preference may be based on ease of computation and/or programming
However, there are other considerations:  experimental determination
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Factor the Resulting Reduced 
Stiffness for Different Forms & 

Investigate

KRubin=[(Gtt
R
)
−1

−(Gtt
R
)
−1Φtk

N

0 I kk
]
T

[Gtt
R 0

0 ωk
2][(Gtt

R
)
−1

−(Gtt
R
)
−1Φtk

N

0 I kk
]

KModified CB
=[

I tt 0 −Φtk
E

0 I rr 0
0 0 I kk

]
T

[
K tt

C 0 K tk
CE

0 K rr
A 0

K kt
EC 0 ωk

2 ][
I tt 0 −Φtk

E

0 I rr 0
0 0 I kk

]
KAlternate=[(Gtt

A
)
−1

−(Gtt
A
)
−1Φtk

N

0 I kk
]
T

[ K tt
A K tk

AN

K kt
NA ωk

2 ][(G tt
A
)
−1

−(Gtt
A
)
−1Φtk

N

0 I kk
]

All Equivalent; However, Rubin provides the superior form relative to test



 52

Special Topic: Deriving Fixed-Interface 
Normal Modes from Free-Interface 

Normal Modes and Residual Flexibility
Why? All about comfort level of engineers with Craig-Bampton vs Rubin-MacNeal. 
Reason for doing this may be that you have executed an unconstrained modal test
but would like to directly incorporate that data into a Craig-Bampton form (instead 
of Rubin-MacNeal). In the '90s, a journal publications came out on deriving fixed-
interface modes from mass-loaded interface modes.  Subsequent to that, another 
paper with the more robust method of deriving fixed-interface modes from free-
interface modes and residual flexibility. The issue of deriving constraint modes was
An open question. However, some of the relations derived in this presentation may
be useful in that. 

K Rubin
=[(Gtt

R)−1 −(Gtt
R)−1 Φtk

N

0 I kk
]
T

[Gtt
R 0

0 ωk
2][(Gtt

R)−1 −(Gtt
R )−1Φtk

N

0 I kk
]=[ (G tt

R
)
−1

−(G tt
R
)
−1Φtk

N

−(Φtk
N
)
T
(Gtt

R
)
−1 ωkk

2
+(Φtk

N
)
T
(Gtt

R
)
−1 Φtk

N ]

M MacNeal
=[0 0

0 I kk ]
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Mixed-Interface Methods (Def.)

Physical DoFs in the Modal Reduction Coordinate 
Transformation may be ALL FIXED, ALL FREE, or 
ANY Combination of FIXED and FREE when 
calculating the Normal Modes
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Hintz (1975)
Method of Constraint Modes

{x t

xo
}=[ I tt 0 Φtk

E

Φot
C Φor

A Φok
E ] {

qt

qr
A

qk
}

Hintz's Method of Constraint Modes

(potential for linear dependencies; special synthesis procedure)
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Herting (1978)

{x t

xo
}=[ I tt 0 0

Φot
C Φor

A Φok
E −Φot

C Φtk
E ]{

x t

qr
A

qk
}

What is the relationship between  Herting's Transformation and Hintz's
Method of Constraint Modes Transformation?
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Relationship Between Herting and 
Hintz's methods

{x t

xo
}=[ I tt 0 Φtk

E

Φot
C Φor

A Φok
E ] {

qt

qr
A

qk
} Hintz's method

{x t

xo
}=[ I tt 0 Φtk

E

Φot
C Φor

A Φok
E ][

I tt 0 −Φtk
E

0 I rr 0
0 0 I kk

]{
xt

qr
A

qk
}

{x t

xo
}=[ I tt 0 0

Φot
C Φor

A Φok
E −Φot

C Φtk
E ]{

x t

qr
A

qk
}

Hintz x elementary
transformation

Modified-Hintz

[
I tt 0 −Φtk

E

0 I rr 0
0 0 I kk

][
I tt 0 Φtk

E

0 I rr 0
0 0 I kk

]=I
Check for Equivalence
(all information retained)
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Then per Equivalence Theorem, 
Herting's and Hintz's 

Transformations are Equivalent!

[ I tt 0 Φtk
E

Φot
C Φor

A Φok
E ]

[ I tt 0 0

Φot
C Φor

A Φok
E −Φot

C Φtk
E ]

Hintz's Method

Herting's Method

Equivalent

[ I tt 0 0

Φot
C Φor

A Φok
E −Φot

C Φtk
E ]

Modified Hintz
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Hintz (1975)
Method of Attachment Modes

{
xr

xb

xo
}=[

I rr 0 0 Φrk
E

Φbr
R Φbb

A 0 Φbk
E

Φor
R Φob

A Φor
A Φok

E ]{
qr

qb

qr
A

qk

}
{
xr

xb

xo
}=[

I rr 0 0 Φrk
E

Φbr
R Φbb

A 0 Φbk
E

Φor
R Φob

A Φor
A Φok

E ][
I rr 0 0 −Φrk

E

0 I bb 0 0
0 0 I rr 0
0 0 0 I kk

]{
xr

qb

qr
A

qk

}
e1
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Hintz 
Method of Attachment Modes – 

Cont'd

{
xr

xb

xo
}=[

I rr 0 0 0

Φbr
R Φbb

A 0 Φbk
E
−Φbr

R Φrk
E

Φor
R Φob

A Φor
A Φok

E
−Φor

R Φrk
E ]{

xr

qb

qr
A

qk

}
{
xr

xb

xo
}=[

I rr 0 0 0

Φbr
R Φbb

A 0 Φbk
E −Φbr

R Φrk
E

Φor
R Φob

A Φor
A Φok

E
−Φor

R Φrk
E ][

I rr 0 0 0

−(Φbb
A )−1Φbr

R (Φbb
A )−1 0 −(Φbb

A )−1(Φbk
E −Φbr

R Φrk
E )

0 0 I rr 0
0 0 0 I kk

] {
xr

xb

qr
A

q k

}
e2
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Hintz
Method of Attachment Modes

Cont'd

{
xr

xb

xo
}=[

I rr 0 0 0
0 Ibb 0 0

Φor
R
−Φob

A
(Φbb

A
)
−1Φbr

R Φob
A
(Φbb

A
)
−1 Φor

A
−Φob

A
(Φbb

A
)
−1

(Φbk
E
−Φbr

R Φrk
E
)+Φok

E
−Φor

R Φrk
E ]{

xr

xb

qr
A

qk

}

[
I rr 0 0 −Φrk

E

0 Ibb 0 0
0 0 I rr 0
0 0 0 I kk

][
I rr 0 0 0

−(Φbb
A )−1Φbr

R (Φbb
A )−1 0 −(Φbb

A )−1(Φbk
E −Φbr

R Φrk
E )

0 0 I rr 0
0 0 0 I kk

]
e1 e2
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Comparison of Hintz Method of 
Constraint Modes and Attachment 

Modes

{
xr

xb

xo
}=[

I rr 0 0 0
0 Ibb 0 0

Φor
R
−Φob

A
(Φbb

A
)
−1Φbr

R Φob
A
(Φbb

A
)
−1 Φor

A
−Φob

A
(Φbb

A
)
−1

(Φbk
E
−Φbr

R Φrk
E
)+Φok

E
−Φor

R Φrk
E ]{

xr

xb

qr
A

qk

}

{x t

xo
}=[ I tt 0 0

Φot
C Φor

A Φok
E
−Φot

C Φtk
E ]{

x t

qr
A

qk
}

Modified Hintz Method of Constraint Modes

Modified Hintz Method of Attachment Modes
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Residual Flexibility 
Mixed-Boundary (RFMB)*

* Majed & Henkel
ASD, 2000

{
x j

xc

xo
}=[

I jj 0 0 0

Φcj
C Gcc

R 0 Φck
E

Φoj
C Goc

R Φor
A Φok

E ] {
x j

qc

qr
A

qk

}
{
x j

xc

xo
}=[

I jj 0 0 0

Φcj
C Gcc

R 0 Φck
E

Φoj
C Goc

R Φor
A Φok

E ][
I jj 0 0 0

−(Gcc
R )−1Φcj

C (Gcc
R )−1 0 −(Gcc

R )−1 Φck
E

0 0 I rr 0
0 0 0 I kk

] {
x j

x c

qr
A

qk

}
{
x j

xc

xo
}=[

I jj 0 0 0
0 Icc 0 0

Φoj
C−Goc

R (Gcc
R )−1Φcj

C Goc
R (Gcc

R )−1 Φor
A Φok

E −Goc
R (Gcc

R )−1Φck
E ] {

x j

xc

qr
A

qk

}
Recall J = R + B

RFMB Component Mode
Sets

RFMB x 
Elementary
transformation

RFMB
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RFMB (Cont'd)

[
I jj 0 0 0

−(Gcc
R
)
−1Φcj

C
(Gcc

R
)
−1 0 −(Gcc

R
)
−1Φck

E

0 0 I rr 0
0 0 0 I kk

] [
I jj 0 0 0

Φcj
C Gcc

R 0 Φck
E

0 0 I rr 0
0 0 0 I kk

]=I
Equivalence
Theorem
(information
conservation)

K RFMB
=[

I jj 0 0 0

−(G cc
R )−1Φcj

C (G cc
R )−1 0 −(Gcc

R )−1Φck
E

0 0 Irr 0

0 0 0 I kk
]
T

[
K jj

C 0 0 0

0 Gcc
R 0 0

0 0 K rr
A 0

0 0 0 ωk
2 ][

I jj 0 0 0

−(Gcc
R )−1Φcj

C (Gcc
R )−1 0 −(Gcc

R )−1Φck
E

0 0 I rr 0

0 0 0 I kk
]
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Concluding Remarks

● A simple systematic approach based on elementary matrix 
transformations was utilized to derive and study a large number of 
fixed, free, and mixed-interface modal reduction methods

● These elementary transformations were utilized to derive 
“modified” forms, study linear dependence, circumvent special 
synthesis procedures,  and show “equivalence” between different 
forms 

● It was shown that although certain forms are mathematically 
equivalent, they are still superior due to ease of direct derivation 
from test data

● Special topics involving damping and changing modal boundary 
conditions were addressed
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